Skip to content

Tsai

시계열 및 시퀀스를 위한 오픈소스 딥러닝 라이브러리

Time series Timeseries Deep Learning Machine Learning Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai

Features

  • Pytorch 와 fastai 기반
  • classification, regression, forecasting, imputation 같은 시계열 작업에 중점

Models

사용 가능한 State-of-the-art 모델들

  • LSTM (Hochreiter, 1997)
  • GRU (Cho, 2014)
  • MLP - Multilayer Perceptron (Wang, 2016)
  • FCN - Fully Convolutional Network (Wang, 2016)
  • ResNet - Residual Network (Wang, 2016)
  • LSTM-FCN (Karim, 2017)
  • GRU-FCN (Elsayed, 2018)
  • mWDN - Multilevel wavelet decomposition network (Wang, 2018)
  • TCN - Temporal Convolutional Network (Bai, 2018)
  • MLSTM-FCN - Multivariate LSTM-FCN (Karim, 2019)
  • InceptionTime (Fawaz, 2019)
  • Rocket (Dempster, 2019)
  • XceptionTime (Rahimian, 2019)
  • ResCNN - 1D-ResCNN (Zou , 2019)
  • TabModel - modified from fastai’s TabularModel
  • OmniScale - Omni-Scale 1D-CNN (Tang, 2020)
  • TST - Time Series Transformer (Zerveas, 2020)
  • TabTransformer (Huang, 2020)
  • MiniRocket (Dempster, 2021)
  • XCM - An Explainable Convolutional Neural Network (Fauvel, 2021)
  • gMLP - Gated Multilayer Perceptron (Liu, 2021)
  • GatedTabTransformer (Cholakov, 2022)

See also

Favorite site