Skip to content

Thread pool

A sample thread pool (green boxes) with waiting tasks (blue) and completed tasks (yellow)

In computer programming, a thread pool pattern (also replicated workers or worker-crew model) consists of a number m of threads, created to perform a number n of tasks concurrently. Typically m is not equal to n; instead, the number of threads is tuned to the computing resources available to handle tasks in parallel (processors, cores, memory) while the number of tasks depends on the problem and may not be known upfront.

Example

#ifndef THREAD_POOL_H
#define THREAD_POOL_H

#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>

class ThreadPool {
public:
    ThreadPool(size_t);
    template<class F, class... Args>
    auto enqueue(F&& f, Args&&... args) 
        -> std::future<typename std::result_of<F(Args...)>::type>;
    ~ThreadPool();
private:
    // need to keep track of threads so we can join them
    std::vector< std::thread > workers;
    // the task queue
    std::queue< std::function<void()> > tasks;

    // synchronization
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop;
};

// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
    :   stop(false)
{
    for(size_t i = 0;i<threads;++i)
        workers.emplace_back(
            [this]
            {
                for(;;)
                {
                    std::function<void()> task;

                    {
                        std::unique_lock<std::mutex> lock(this->queue_mutex);
                        this->condition.wait(lock,
                            [this]{ return this->stop || !this->tasks.empty(); });
                        if(this->stop && this->tasks.empty())
                            return;
                        task = std::move(this->tasks.front());
                        this->tasks.pop();
                    }

                    task();
                }
            }
        );
}

// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args) 
    -> std::future<typename std::result_of<F(Args...)>::type>
{
    using return_type = typename std::result_of<F(Args...)>::type;

    auto task = std::make_shared< std::packaged_task<return_type()> >(
            std::bind(std::forward<F>(f), std::forward<Args>(args)...)
        );

    std::future<return_type> res = task->get_future();
    {
        std::unique_lock<std::mutex> lock(queue_mutex);

        // don't allow enqueueing after stopping the pool
        if(stop)
            throw std::runtime_error("enqueue on stopped ThreadPool");

        tasks.emplace([task](){ (*task)(); });
    }
    condition.notify_one();
    return res;
}

// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
    {
        std::unique_lock<std::mutex> lock(queue_mutex);
        stop = true;
    }
    condition.notify_all();
    for(std::thread &worker: workers)
        worker.join();
}

#endif

See also

Favorite site

Implementation

Tip & Guide

References


  1. Bcho.tistory.com_-node.js-_Introduction_and_internal_structure.pdf