Skip to content

틀:List:MachineLearning:Documentation

Bayesian probability

Bayesian Reasoning and Machine Learning
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.Online
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/020217.pdf
020217_-_Bayesian_Reasoning_and_Machine_Learning.pdf

Deep learning

ImageNet Classification with Deep Convolutional Neural Networks (AlexNet)
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
ImageNet_Classification_with_Deep_Convolutional_Neural_Networks.pdf
[한글 번역] 깊은 컨볼루셔널 신경망을 이용한 이미지네트(ImageNet) 분류
ImageNet_Classification_with_Deep_Convolutional_Neural_Networks_-_ko.pdf
Going deeper with convolutions (GoogleNet)
http://arxiv.org/pdf/1409.4842v1.pdf
Going_deeper_with_convolutions.pdf
번역: GoogleNet
특집원고 딥하이퍼넷 모델 (Deep Hypernetwork models) (서울대학교/장병탁)
Deep_Hypernetwork_models_201508.pdf
[Mocrosoft] Deep Residual Learning for Image Recognition (Winner ILSVRC2015)
Deep_Residual_Learning_for_Image_Recognition(Winner_ILSVRC2015)_Microsoft.pdf
[Microsoft] Fast R-CNN, Towards Real-Time Object Detection with Region Proposal Networks (Winner ILSVR2015)
Fast_R-CNN,Towards_Real-Time_Object_Detection_with_Region_Proposal_Networks(Winner_ILSVR2015)_Microsoft.pdf
Learning Deconvolution Network for Semantic Segmentation
http://cvlab.postech.ac.kr/research/deconvnet/
Deep EXpectation of apparent age from a single image
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks.
Inside_outside_net_detecting_objects_in_context_with_skip_pooling_and_recurrent_neural_networks_2015.pdf
Small Object 탐지방법에 관한 논문.
조대협의 블로그 - 수학포기자를 위한 딥러닝과 텐서플로우의 이해
http://bcho.tistory.com/1208
Machine_learning_ebooks_-_Machine_learning_for_those_who_abandon_math.pdf
Densely Connected Convolutional Networks (DenseNets)
Deep learning CVPR2017 최고 논문상
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.
딥러닝 인터뷰 북
머신러닝을 배우는 석/박사 과정 및 구직자들을 위한 실전 질문과 솔루션 모음
인쇄본 구입도 가능하지만, 전체 PDF는 무료로 공개

Tutorials

딥러닝 제대로 시작하기 (지은이 오카타니 타카유키/옮긴이 심효섭)
Deep_Learning_-Takayuki_Okatani-2015-_sample.pdf
머신러닝 입문 가이드 - IDG Deep Dive
http://www.itworld.co.kr/techlibrary/97428
IDG_DeepDive_Machine_learning-20160113.pdf
딥러닝의 이해 (미발간; 2016-08-22 ver)
Understanding_deep_learning_0822.pdf
Fundamental of Reinforcement Learning
https://www.gitbook.com/book/dnddnjs/rl/details
Fundamental_of_Reinforcement_Learning.pdf
모두의연구소 - 강화 학습의 기본
Deep Learning Papers Reading Roadmap (딥러닝 논문 로드맵)
https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap/blob/master/README.md
Deep_Learning_Papers_Reading_Roadmap.md.zip
[추천] Machine Learning-based Web Exception Detection (금융보안원 프로젝트 관련 참조사이트!)
https://cloudfocus.aliyun.com/Machine-Learning-based-Web-Exception-Detection-89782?spm=a2c1b.a2c1b4.a2c1b4.16.ZSQoEd
Machine_Learning-based_Web_Exception_Detection_-Insights_and_Trends-_Alibaba_Cloud_Focus.pdf
머신러닝 기초 1~57편 (잡동사니 탐구 - 참스터디 ePaiai : 네이버 블로그)
http://sams.epaiai.com/220498694383
Microsoft, ML for Beginners 강의 공개
MS Azure Clouds Advocates 팀이 만든 12주, 24강짜리 커리큘럼
Scikit-learn을 이용한 클래식 머신러닝 강의 (딥러닝은 별도 AI 강의로 나올 예정)
https://github.com/microsoft/ML-For-Beginners

Compress model

Deep Compression and EIE - Deep Neural Network Model Compression and Efficient Inference Engine
Deep_compression_and_EIE_PPT.pdf
Learning bothWeights and Connections for Efficient Neural Networks
Learning_both_weights_and_connections_for_efficient_neural_networks_2015.pdf

Convolutional neural network

Reveal.js를 사용한 CNN 프레젠테이션 (Presentation).
Author - 나
Reveal-ml.tar.gz
Gradient-Based Learning Applied to Document Recognition
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
Gradient-Based_Learning_Applied_to_Document_Recognition.pdf
Visualizing and Understanding Convolutional Neural Networks
http://arxiv.org/abs/1311.2901
1311.2901v3.pdf
Compressing CNN for Mobile Device (Samsung) - CNN 모델 압축의 필요성 etc ...
[http://mlcenter.postech.ac.kr/files/attach/workshop_fall_2015/삼성전자_김용덕_박사.pdf](http://mlcenter.postech.ac.kr/files/attach/workshop_fall_2015/삼성전자_김용덕_박사.pdf)
Samsung_-_Compressing_CNN_for_Mobile_Device.pdf
Using Filter Banks in Convolutional Neural Networks for Texture Classification
https://arxiv.org/abs/1601.02919

Deep belief network

The Applications of Deep Learning on Traffic Identification
Us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf

Deconvolution neural network

Learning Deconvolution Network for Semantic Segmentation
http://cvlab.postech.ac.kr/research/deconvnet/
https://arxiv.org/abs/1505.04366
1505.04366.pdf

Segmentation

Learning to Segment (Facebook Research)
https://research.fb.com/learning-to-segment/
DeepMask+SharpMask as well as MultiPathNet.
Recurrent Instance Segmentation
https://arxiv.org/abs/1511.08250
1511.08250.pdf
Slideshare - Single Shot MultiBox Detector와 Recurrent Instance Segmentation
vid2vid
https://github.com/NVIDIA/vid2vid
Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic video-to-video translation.
It can be used for turning semantic label maps into photo-realistic videos, synthesizing people talking from edge maps, or generating human motions from poses.

Fire Detection

Fire Detection#Deep learning based에 정리한다.

Background subtraction

Background subtraction#Deep learning based에 정리한다.

LSTM

Long short-term memory에 정리한다.

Learning

Siamese Neural Networks for One-Shot Image Recognition
https://jayhey.github.io/deep%20learning/2018/02/06/saimese_network/
딥러닝에서 네트워크를 학습시킬 때, 매우 많은 트레이닝 데이터가 필요합니다. 이러한 단점을 극복하여 한 레이블 당 하나의 이미지만 있어도 분류할 수 있게 학습시키는게 one-shot learning입니다.

NVIDIA AI Developer Newsletter

[추천] AI Can Transform Anyone Into a Professional Dancer
https://news.developer.nvidia.com/ai-can-transform-anyone-into-a-professional-dancer/
https://arxiv.org/abs/1808.07371
Transforming Standard Video Into Slow Motion with AI
https://news.developer.nvidia.com/transforming-standard-video-into-slow-motion-with-ai/
NVIDIA SPLATNet Research Paper Wins a Major CVPR 2018 Award
https://news.developer.nvidia.com/nvidia-splatnet-research-paper-wins-a-major-cvpr-2018-award/
AI Learns to Play Dota 2 with Human Precision
https://news.developer.nvidia.com/ai-learns-to-play-dota-2-with-human-precision/
[추천] This AI Can Automatically Remove the Background from a Photo
https://news.developer.nvidia.com/this-ai-can-automatically-remove-the-background-from-a-photo/
NVDLA Deep Learning Inference Compiler is Now Open Source
https://devblogs.nvidia.com/nvdla/

Nature

Deep learning of aftershock patterns following large earthquakes
https://www.reddit.com/r/MachineLearning/comments/9bo9i9/r_deep_learning_of_aftershock_patterns_following/
https://www.nature.com/articles/s41586-018-0438-y
https://drive.google.com/file/d/1DSqLgFZLuNJXNi2dyyP_ToIGHj94raWX/view

Cancer

Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening
https://medium.com/@jasonphang/deep-neural-networks-improve-radiologists-performance-in-breast-cancer-screening-565eb2bd3c9f

Text Generation

Text Generation항목 참조.

VizSeq - A Visual Analysis Toolkit for Text Generation Tasks
https://arxiv.org/abs/1909.05424