Software design
소프트웨어 설계(Software design)는 소프트웨어 해결책을 위한 문제해결과 계획 과정이다. 소프트웨어의 목적과 명세가 결정되면 개발자가 설계 하거나 설계자를 고용하여 해결책을 위한 계획을 개발하도록 한다. 저수준 요소와 알고리즘 구현 문제, 그리고 구조에 대한 조망이 포함된다.
Design concepts
The design concepts provide the software designer with a foundation from which more sophisticated methods can be applied. A set of fundamental design concepts has evolved. They are:
- Abstraction - Abstraction is the process or result of generalization by reducing the information content of a concept or an observable phenomenon, typically in order to retain only information which is relevant for a particular purpose.
- Refinement - It is the process of elaboration. A hierarchy is developed by decomposing a macroscopic statement of function in a stepwise fashion until programming language statements are reached. In each step, one or several instructions of a given program are decomposed into more detailed instructions. Abstraction and Refinement are complementary concepts.
- Modularity - Software architecture is divided into components called modules.
- Software Architecture - It refers to the overall structure of the software and the ways in which that structure provides conceptual integrity for a system. A good software architecture will yield a good return on investment with respect to the desired outcome of the project, e.g. in terms of performance, quality, schedule and cost.
- Control Hierarchy - A program structure that represents the organization of a program component and implies a hierarchy of control.
- Structural Partitioning - The program structure can be divided both horizontally and vertically. Horizontal partitions define separate branches of modular hierarchy for each major program function. Vertical partitioning suggests that control and work should be distributed top down in the program structure.
- Data Structure - It is a representation of the logical relationship among individual elements of data.
- Software Procedure - It focuses on the processing of each modules individually
- Information Hiding - Modules should be specified and designed so that information contained within a module is inaccessible to other modules that have no need for such information
Design considerations
There are many aspects to consider in the design of a piece of software. The importance of each should reflect the goals the software is trying to achieve. Some of these aspects are:
- Compatibility - The software is able to operate with other products that are designed for interoperability with another product. For example, a piece of software may be backward-compatible with an older version of itself.
- Extensibility - New capabilities can be added to the software without major changes to the underlying architecture.
- Fault-tolerance - The software is resistant to and able to recover from component failure.
- Maintainability - A measure of how easily modified the software is through bug fixes or functional modifications. High maintainability can be the product of modularity and extensibility.
- Modularity - the resulting software comprises well defined, independent components. That leads to better maintainability. The components could be then implemented and tested in isolation before being integrated to form a desired software system. This allows division of work in a software development project.
- Packaging - Printed material such as the box and manuals should match the style designated for the target market and should enhance usability. All compatibility information should be visible on the outside of the package. All components required for use should be included in the package or specified as a requirement on the outside of the package.
- Reliability - The software is able to perform a required function under stated conditions for a specified period of time.
- Reusability - the software is able to add further features and modification with slight or no modification.
- Robustness - The software is able to operate under stress or tolerate unpredictable or invalid input. For example, it can be designed with a resilience to low memory conditions.
- Security - The software is able to withstand hostile acts and influences.
- Usability - The software user interface must be usable for its target user/audience. Default values for the parameters must be chosen so that they are a good choice for the majority of the users.
Modeling language
A modeling language is any artificial language that can be used to express information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure. A modeling language can be graphical or textual. Examples of graphical modeling languages for software design are:
- Business Process Modeling Notation (BPMN) is an example of a Process Modeling language.
- EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose data modeling language.
- Extended Enterprise Modeling Language (EEML) is commonly used for business process modeling across a number of layers.
- Flowchart is a schematic representation of an algorithm or a stepwise process,
- Fundamental Modeling Concepts (FMC) modeling language for software-intensive systems.
- IDEF is a family of modeling languages, the most notable of which include IDEF0 for functional modeling, IDEF1X for information modeling, and IDEF5 for modeling ontologies.
- Jackson Structured Programming (JSP) is a method for structured programming based on correspondences between data stream structure and program structure
- LePUS3 is an object-oriented visual Design Description Language and a formal specification language that is suitable primarily for modelling large object-oriented (Java, C++, C#) programs and design patterns.
- Unified Modeling Language (UML) is a general modeling language to describe software both structurally and behaviorally. It has a graphical notation and allows for extension with a Profile (UML).
- Alloy (specification language) is a general purpose specification language for expressing complex structural constraints and behavior in a software system. It provides a concise language based on first-order relational logic.
- Systems Modeling Language (SysML) is a new general-purpose modeling language for systems engineering.
Design patterns
Design patterns 항목 참조.
See also
- Design pattern
- Software design
- Software design patterns
- Gang of Four (GoF)
- Algorithms
- Software architecture - 소프트웨어 아키텍처 디자인 관련 내용.
- Event driven architecture
- System Architecture
- Systemizer - 시스템 디자인 시각화 도구