Motion estimation
Motion Estimation(ME) 이란, 동영상 비디오에서 각 객체(Object) 혹은 처리 단위 블록(Macroblock)이 시간상 앞뒤 프레임에서 어느 위치로 움직였는지를 추정(Estimation)하는 것을 말하는 것으로 MPEG 등의 동영상 압축과 화소 디모자이킹(Pixel Demosaicking), 프레임 보간(Frame Interpolation) 등의 비디오 영상처리에서 광범위하게 이용된다.
Category
- 물체인식 (Object Recognition)
- OpenCV:tracking - OpenCV의 Tracking 모듈 및 API에 대한 설명
- Particle filter
- Mean shift
- Camshift
- MedianFlow
- Tracking Learning Detection (TLD)
- Kernelized Correlation Filters (KCF)
- Fast Tracking via Spatio-Temporal Context Learning (STC) - 이 곳에서 FPS가 KCF보다 높게 나타남. 확인 필요.
- BOOSTING
- KLT (비교적 빠르다는 평가가 있음; 조사 필요.)
- High-Speed Tracking-by-Detection Without Using Image Information (IOU Tracker)
- Multiple Hypothesis Tracking Revisited
- CREST: Convolutional Residual Learning for Visual Tracking
- Faster Spatially Regularized Correlation Filters for Visual Tracking
- Integrating Boundary and Center Correlation Filters for Visual Tracking with Aspect Ratio Variation
- Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
- Attentional Correlation Filter Network for Adaptive Visual Tracking
- Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
- ROLO
- STRUCK
- VOTR: Visual Object Tracking Repository.
- Simple Online and Realtime Tracking (SORT)
Human Pose Estimation
사람의 움직임 추정.
ETC
- Convolutional Pose Machines - Tensorflow
- https://github.com/timctho/convolutional-pose-machines-tensorflow
- PoseTrack Dataset and Benchmark
- https://posetrack.net/
- Detect And Track - Efficient Pose Estimation in Videos
- https://github.com/facebookresearch/DetectAndTrack
- Pose Animator
- https://github.com/yemount/pose-animator/
- Pose Animator takes a 2D vector illustration and animates its containing curves in real-time based on the recognition result from PoseNet and FaceMesh.
- Critter Camera
- 폰/랩탑을 동작감지 카메라로
- https://critter.camera/
- 안쓰는 폰/태블릿/랩탑을 이용해서 특정 위치의 동작 감지 카메라로 활용
- 브라우저상에서만 실행되는 로컬 앱 : 모든 이미지는 로컬에만 저장되어 안전
- 사람부터 아주 작은 물체까지 모든 것을 인식하는 고감도 모션 감지 동작
- 켜두면 나중에 움직임이 있었던 것들만 캡쳐이미지로 다운로드 가능
unknown
- https://github.com/hafizas101/Real-time-human-pose-estimation-and-classification
- https://gkioxari.github.io/PersonNet/index.html
- https://github.com/LZQthePlane/Online-Realtime-Action-Recognition-based-on-OpenPose
- https://github.com/felixchenfy/Realtime-Action-Recognition
- https://github.com/dakenan1/Realtime-Action-Recognition-Openpose
- https://dronefreak.github.io/human-action-classification/
Documentation
- Discrete-Continuous Energy Minimization for Multi-Target Tracking
- http://www.milanton.de/dctracking/
- https://bitbucket.org/amilan/dctracking
- MatLab Source code: Dctracking-v1.0.zip
- Automatic Tracker Selection w.r.t Object Detection Performance
- https://arxiv.org/abs/1404.2005v1
-
1404.2005v1.pdf
- Globally Optimal Solution to Multi-object Tracking with Merged Measurements
- http://www.robots.ox.ac.uk/~joao/merged/
-
Henriques_iccv2011.pdf
- Stable Multi-Target Tracking in Real-Time Surveillance Video (CVPR 2011)
- http://www.robots.ox.ac.uk/ActiveVision/Publications/benfold_reid_cvpr2011/benfold_reid_cvpr2011.html
- http://www.robots.ox.ac.uk/ActiveVision/Publications/benfold_reid_cvpr2011/benfold_reid_cvpr2011.pdf
-
Benfold_reid_cvpr2011.pdf
- Video Tracking with an Adaptive Particle Filter (Person)
- Youtube video
- Discrete-Continuous Optimization for Multi-Target Tracking (CVPR 2012)
- Youtube video
- Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies
- https://arxiv.org/abs/1701.01909v2
- Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking
- https://arxiv.org/abs/1704.02781v1
- [추천] Comparison of tracking algorithms implemented in OpenCV
- OpenCV의 Tracking 알고리즘 비교
-
Matecconf_cscc2016_04031.pdf - https://www.matec-conferences.org/articles/matecconf/pdf/2016/39/matecconf_cscc2016_04031.pdf
- Video Segmentation via Object Flow
- http://files.is.tue.mpg.de/black/papers/TsaiCVPR2016.pdf
-
TsaiCVPR2016.pdf
- Real-Time Multiple Object Tracking - A Study on the Importance of Speed
- https://arxiv.org/abs/1709.03572
- Github - Code for my master thesis, titled "Real-Time Multiple Object Tracking: A Study on the Importance of Speed".
Deep Learning based Tracker
- Learning A Deep Compact Image Representation for Visual Tracking (NIPS2013')
- http://winsty.net/dlt.html
- Robust Visual Tracking via Convolutional Networks
- https://arxiv.org/abs/1501.04505
-
1501.04505.pdf
- Deep Tracking - Seeing Beyond Seeing Using Recurrent Neural Networks
- https://arxiv.org/abs/1602.00991
-
1602.00991v2.pdf
- Fully-Convolutional Siamese Networks for Object Tracking (SiamFC)
- http://www.robots.ox.ac.uk/~luca/siamese-fc.html
- https://github.com/bertinetto/siamese-fc
- Tensorflow Object Tracking Video
- https://github.com/DrewNF/Tensorflow_Object_Tracking_Video
- Object Tracking in Tensorflow ( Localization Detection Classification ) developed to partecipate to ImageNET VID competition
- Deep Reinforcement Learning for Visual Object Tracking in Videos
- https://arxiv.org/abs/1701.08936v1
-
1701.08936v1.pdf
- Online Multi-Target Tracking Using Recurrent Neural Networks
- https://arxiv.org/abs/1604.03635v2
-
1604.03635v2.pdf
- GOTURN (Learning to Track at 100 FPS with Deep Regression Networks)
- https://github.com/davheld/GOTURN
- http://davheld.github.io/GOTURN/GOTURN.html
- http://davheld.github.io/GOTURN/GOTURN.pdf
-
GOTURN.pdf
- Adaptive Correlation Filters with Long-Term and Short-Term Memory for Object Tracking
- https://arxiv.org/abs/1707.02309
- Tracking in Aerial Hyperspectral Videos using Deep Kernelized Correlation Filters
- https://arxiv.org/abs/1711.07235v1
- KCF를 사용하는듯 하다. 정확한 확인이 필요하다.
- Efficient Video Object Segmentation via Network Modulation
- One-Shot Modulation Network for Semi-supervised Video Segmentation 참조.
- Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning (ADNet)
- https://sites.google.com/view/cvpr2017-adnet
- Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications
- https://arxiv.org/abs/1808.01356
- Learning Hierarchical Features for Visual Object Tracking with Recursive Neural Networks
- https://arxiv.org/abs/1801.02021v1
- Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
- https://arxiv.org/abs/1607.05781
- Multi-Class Multi-Object Tracking using Changing Point Detection
- https://arxiv.org/abs/1608.08434
- https://www.youtube.com/watch?v=xOGQ1lP7pt8
- Deep Network Flow for Multi-Object Tracking
- http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/cvpr17_deepnetworkflow.pdf
- Joint detection and online multi-object tracking
- http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w29/Kieritz_Joint_Detection_and_CVPR_2018_paper.pdf
- Learning Dynamic Memory Networks for Object Tracking (MemTrack)
- https://arxiv.org/abs/1803.07268
- http://openresearch.ai/t/memtrack-learning-dynamic-memory-networks-for-object-tracking/235
- Learning Policies for Adaptive Tracking with Deep Feature Cascades (EAST)
- https://arxiv.org/abs/1708.02973
- Parallel Tracking and Verifying - A Framework for Real-Time and High Accuracy Visual Tracking (Parallel Tracking and Verifying; PTAV)
- https://arxiv.org/abs/1708.00153
- Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation
- https://arxiv.org/abs/1701.00561
- Long-term face tracking in the wild using deep learning
- https://arxiv.org/abs/1805.07646
- Deep SORT
- Simple Online Realtime Tracking with a Deep Association Metric
- https://github.com/nwojke/deep_sort
- TrackNet
- Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis
- https://arxiv.org/abs/1902.01466
Multi Object Tracking
- adipandas/multi-object-tracker - Multi-object trackers in Python
Deep Learning Based
Multi Object Tracking is the task tracking objects in video frames. We survey the various types of MOT methods, with special focus on the latest methods that use Deep Learning.
- Visual tracking library based on PyTorch
- https://github.com/visionml/pytracking
- Learning to Track: Online Multi-object Tracking by Decision Making
- http://cvgl.stanford.edu/papers/xiang_iccv15.pdf
- Online Multi-Target Tracking Using Recurrent Neural Networks
- https://arxiv.org/abs/1604.03635
- Deep Network Flow for Multi-Object Tracking
- https://arxiv.org/abs/1706.08482
- Learning to Track at 100 FPS with Deep Regression Networks
- https://link.springer.com/chapter/10.1007/978-3-319-46448-0_45
- Deep tracking in the wild: End-to-end tracking using recurrent neural networks
- http://www.robots.ox.ac.uk/~mobile/Papers/2017_IJRR_Dequaire.pdf
- Survey Slides by Merc Benz
- https://32e624bb-a-62cb3a1a-s-sites.googlegroups.com/site/dlitsc17/A%20Survey%20on%20Leveraging%20Deep%20Neural%20Networks%20for.pdf
- Multiple Object Tracking - A Literature Review
- https://arxiv.org/abs/1409.7618
- https://pdfs.semanticscholar.org/8b42/8625c8a496c7e56b419197df55c751c22bc3.pdf
- A survey on multiple object tracking algorithm
- http://ieeexplore.ieee.org/document/7832121/
- Target Re-identification and Multi-Target Multi-Camera Tracking (DeepCC)
- https://reid-mct.github.io/2019/
- Deep Affinity Network for Multiple Object Tracking (Deep Affinity Network; DAN)
- https://github.com/shijieS/SST
- bendidi/Tracking-with-darkflow
- Real-time people Multitracker using YOLO v2 and deep_sort with tensorflow
- https://github.com/bendidi/Tracking-with-darkflow
- pan1028/deep-multi-tracking
- Multiple Object Tracking Using Deep Learning and Kalman Filter
- https://github.com/pan1028/deep-multi-tracking
- ReIdentificationNet
- Enhance Multi-Camera Tracking Accuracy by Fine-Tuning AI Models with Synthetic Data
Benchmark
- foolwood/benchmark_results - visual tracker benchmark results
- https://github.com/foolwood/benchmark_results
-
Foolwood-benchmark_results-master-712bc86-README.zip
- Image Matching Benchmark
- https://arxiv.org/abs/1709.03917
- Long-Term Visual Object Tracking Benchmark
- https://arxiv.org/abs/1712.01358v1
- A Comparison of Feature Detectors and Descriptors forObject Class Matching
- http://vision.cs.tut.fi/data/publications/neurocomputing2015_accepted.pdf
- PoseTrack Dataset and Benchmark
- https://posetrack.net/
Challenge
- Welcome to MOTChallenge - The Multiple Object Tracking Benchmark!
- https://motchallenge.net/
- MOT17 Results
- VOT challenges
- http://votchallenge.net/
- [추천] The sixth Visual Object Tracking VOT2018 challenge results 1
- VideoNet - A benchmark initiative for all things video
- http://videonet.team/
VOT2018 Result
- Evolution of Siamese Visual Tracking with Very Deep Networks (SiamRPN++)
- https://arxiv.org/abs/1812.11703
- High Performance Visual Tracking with Siamese Region Proposal Network (SiamRPN)
- http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf
-
Li_High_Performance_Visual_CVPR_2018_paper.pdf
- Distractor-aware Siamese Networks for Visual Object Tracking (DaSiamRPN)
- https://arxiv.org/abs/1808.06048
- LADCF - No 1 Algorithm on the public dataset of VOT2018
- Demo for Learning Adaptive Discriminative Correlation Filters (LADCF) via Temporal Consistency preserving Spatial Feature Selection for Robust Visual Tracking
- https://github.com/XU-TIANYANG/LADCF
- MBMD (MobileNet-based tracking by detection algorithm) for VOT2018 Long-Term Challenge.
- https://github.com/xiaobai1217/MBMD
- Learning regression and verification networks for long-term visual tracking
- Multi-solution Fusion for Visual Tracking (MFT)
- https://github.com/ShuaiBai623/MFT
- Multi-hierarchical Independent Correlation Filters for Visual Tracking
SiamFC series
See also
Favorite site
- Wikipedia (en) 움직임 추정에 대한 설명
- Naver 오픈백과: 동영상 압축에 있어서의 Motion Estimation
- OpenCV 3.0 Global Motion Estimation
- Github - Deep-Learning-for-Tracking-and-Detection (Collection of papers and other resources for object tracking and detection using deep learning)
- Deep Learning for Video: Object Tracking (UPC 2018)
Site collection
Object Tracking
- 다크 프로그래머 - 영상추적 프로그램(visual tracker) (Mean shift, Camshift, Histogram, Optical Flow)
- 다크 프로그래머 - 영상추적#2: TLD - 추적하면서 학습한다
- Tracker Benchmark v1.0
- OpenCV 동작 감지, 개체 추적
- Condensation 알고리즘
- camshift를 이용한 tracking (opencv 제공 함수 이용)
- [추천] Object Tracking using OpenCV (C++/Python) 6 (OpenCV의 Tracking 알고리즘의 장단점 비교)
- Object Tracking - 객체 탐지 및 추적 방법 (1) 7
- Object Tracking - 객체 탐지 및 추적 방법 (2) 8
- Object Tracking - SVM을 이용한 HOG 기반 객체 추적 9
- Object Tracking - Optical Flow 비교 10
- Fast Object Tracking – Robot Computer Vision (Color based tracking, Shape based tracking)
- Multi-object tracking with dlib (dlib)
- [추천] Vehicle Detection and Tracking using Machine Learning and HOG 11
opencv_contrib/modules/tracking/samples/kcf.cpp
) - Flow accuracy and interpolation evaluation (Optical Flow 알고리즘별 성능 측정 사이트)
Multiple Object Tracking
- Youtube: Multiple Object Tracker (OpenCV) (Demo)
- Github - Smorodov/Multitarget-tracker - Multitarget tracker implementation, Hungarian algorithm + Kalman filter
- OpenCV: Using MultiTracker
References
-
Kristan2018The.pdf ↩
-
2019년 2월 17일: 2015-10-09-tracking-master-eff293f.md.zip ↩
-
2019년 2월 21일: Abhineet123-Deep-Learning-for-Tracking-and-Detection-master-2419b81-ReadMe.md.zip ↩
-
2018년 04월 28일: Huanglianghua-mot-papers-master-0a24ffc-README.md.zip ↩
-
SpyderXu_-multi-object-tracking-paper-list-d91ac35-master-_README.zip ↩
-
Object_Tracking_using_OpenCV_-_Learn_OpenCV.pdf ↩
-
Enough_is_not_enough_-Object_Tracking-_how_to_01.pdf ↩
-
Enough_is_not_enough_-Object_Tracking-_how_to_02.pdf ↩
-
Enough_is_not_enough_-Object_Tracking-_SVM_and_HOG_tracker.pdf ↩
-
Enough_is_not_enough_-Object_Tracking-_Optical_Flow.pdf ↩
-
Vehicle_Detection_and_Tracking_using_Machine_Learning_and_HOG.pdf ↩