Imbalanced Learning
Imbalanced Learning (불균형 학습) 개요
비정상 거래 탐지와 같은 케이스의 경우, 정상적인 거래 보다는 정상 범위에서 벗어난 것으로 판단되는 거래 기록의 비중이 현저하게 작을 것이다. 그런데 보통의 알고리즘으로 이러한 비정상 거래를 찾아내기 에는 이러한 데이터의 불균형이 중요한 이슈로 작용하는데, 본 글에서는 이러한 불균형 학습과 관련된 논의를 해보고자 한다.
알고리즘 자체로 Class 불균형을 해소하는 방법을 제외하면, Over-Sampling과 Under-Sampling 방법이 가장 대표적인 방법이라고 할 수 있다.