Skip to content

Generative Adversarial Networks

생성적 적대 신경망(生成的敵對神經網, 영어: generative adversarial network; GAN)은 비지도 학습에 사용되는 인공지능 알고리즘으로, 제로섬 게임 틀 안에서 서로 경쟁하는 두 개의 신경 네트워크 시스템에 의해 구현된다. 이 개념은 2014년에 이안 굿펠로우(Ian. j. Goodfellow)에 의해 발표되었다.

Conditional GAN(Conditional Generative Adversarial Net, CGAN), Cycle GAN 등 여러 종류가 존재한다.

Abstractor

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

Documentation

Generative Adversarial Networks
https://arxiv.org/abs/1406.2661
Progressive Growing of GANs for Improved Quality, Stability, and Variation
https://arxiv.org/pdf/1710.10196.pdf
1710.10196.pdf
https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://github.com/tkarras/progressive_growing_of_gans
https://www.reddit.com/r/MachineLearning/comments/9ybstu/r_tdls_progressive_growing_of_gans/

파생 기술

Audio & Music

GANSynth - Making music with GANs
GANSynth is an algorithm for synthesizing audio with generative adversarial networks. The details can be found in the ICLR 2019 Paper. It achieves better audio quality than a standard WaveNet baselines on the NSynth Dataset, and synthesizes audio thousands of times faster.

Image

Video

  • Gen-2 - Runway, 비디오 생성형 AI "Gen-2" 공개
  • Goku - ByteDance의 Flow 기반 비디오 생성 모델

Colorization

Github - aleju/colorizer
This project uses GANs (generative adversarial networks) to add color to black and white images.

Apartment Building Design

ArchiGAN - a Generative Stack for Apartment Building Design
https://devblogs.nvidia.com/archigan-generative-stack-apartment-building-design/

Simulation

  • Genesis - A Generative and Universal Physics Engine for Robotics and Beyond

UI/GUI

  • v0 - Vercel이 만든 생성형 UI 시스템

검색 엔진 (Search Engine)

  • phind - 개발자를 위한 Generative AI 검색 엔진

Projects

라이브러리 목록:

당신이 정말로 알아야 할 6가지 GAN 아키텍처 (2022년 3월 21일)

가장 인기 있는 GAN 공식은 다음과 같습니다.

  • 한 도메인에서 다른 도메인으로 이미지 변환(CycleGAN)
  • 텍스트 설명에서 이미지 생성 (text-to-image)
  • 고해상도 이미지(ProgressiveGAN) 등을 생성합니다.

이 기사에서는 가장 인기 있는 GAN 아키텍처, 특히 GAN (Generative Adversarial Networks)에 대한 다양한 범위를 다루기 위해 알아야 할 6가지 아키텍처에 대해 설명합니다.

See also

Favorite site

Article

References


  1. Advanced_GANs_-_ratsgos_blog.pdf 

  2. GAN_-Some_cool_applications_of_GANs-Jonathan_Hui-_Medium.pdf