Caffe:Api:ConvolutionLayer
컨볼루션(Convolution) 레이어는 출력 이미지에 하나의 피쳐 맵을 생성하는 일련의 학습 필터로 입력 이미지를 컨볼 루션합니다.
ConvolutionParameter
- num_output (c_o)
- the number of filters
- kernel_size (or kernel_h and kernel_w)
- specifies height and width of each filter
- weight_filler [default type: 'constant' value: 0]
- [Strongly Recommended]
- bias_term [default true]
- specifies whether to learn and apply a set of additive biases to the filter outputs
- pad (or pad_h and pad_w) [default 0]
- specifies the number of pixels to (implicitly) add to each side of the input
- stride (or stride_h and stride_w) [default 1]
- specifies the intervals at which to apply the filters to the input
- group (g) [default 1]
- If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the iith output group channels will be only connected to the iith input group channels.
Protobuf example
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
# learning rate and decay multipliers for the filters
param { lr_mult: 1 decay_mult: 1 }
# learning rate and decay multipliers for the biases
param { lr_mult: 2 decay_mult: 0 }
convolution_param {
num_output: 96 # learn 96 filters
kernel_size: 11 # each filter is 11x11
stride: 4 # step 4 pixels between each filter application
weight_filler {
type: "gaussian" # initialize the filters from a Gaussian
std: 0.01 # distribution with stdev 0.01 (default mean: 0)
}
bias_filler {
type: "constant" # initialize the biases to zero (0)
value: 0
}
}
}
I/O
- Input
- n * c_i * h_i * w_i
- Output
- n * c_o * h_o * w_o
- h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1
- w_o = (w_i + 2 * pad_w - kernel_w) / stride_w + 1
See also
- Caffe
- Caffe:Api
- Caffe:Api:PoolingLayer
- Caffe:Api:BaseConvolutionLayer
- Convolution
- Dilated Convolutions
- Activation function
- im2col
- gemm